Classifying module categories for generalized Temperley–Lieb–Jones ∗-2-categories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely Accessible Categories, Generalized Module Categories and Approximations

We review some properties of finitely accessible categories related to approximations, and we analyze the relationship between approximations in a finitely accessible additive category and in its associated generalized module category.

متن کامل

Running Head: Classifying with Essentialized Categories Classifying with Essentialized Categories

A central tenet of modern categorization research is that real-world categories have no defining features, and that features are better thought of as probabilistically related to their category. Nevertheless, the belief in properties that are invariably associated with categories has persisted. One view— psychological essentialism—further states that essential properties and structures constrai...

متن کامل

Classifying with Essentialized Categories

Psychological essentialism states that certain categories are assumed to have an underlying hidden reality (or "essence") that defines objects’ identity (Gelman, 2003; Medin & Ortony, 1989). Everyday classification, on the other hand, must be based on the features of objects that are observable. How do we reconcile these facts? One way is to assume that essential features cause observable ones,...

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Tilting in module categories

Let M be a module over an associative ring R and σ[M ] the category of M -subgenerated modules. Generalizing the notion of a projective generator in σ[M ], a module P ∈ σ[M ] is called tilting in σ[M ] if (i) P is projective in the category of P -generated modules, (ii) every P -generated module is P presented, and (iii) σ[P ] = σ[M ]. We call P self-tilting if it is tilting in σ[P ]. Examples ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2020

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x20500275